本站
非官方网站,信息完全免费,仅供参考,不收取任何费用,请以官网公布为准!
乌鲁木齐地区2014年高三年级第一次诊断性测验理科数学试题参考答案及评分标准
一、选择题:共12小题,每小题5分,共60分.
题号123456789101112选项BBDCACADADAA
1.选B.【解析】∵,,∴.
阳光高考yggk.net独家
2.选B.【解析】∵,∴的实部为.
3.选D.【解析】∵, ∴.
4.选C.【解析】由函数奇偶性定义得是奇函数,是偶函数,
∵的定义域为,∴既不是奇函数,又不是偶函数.
5.选A.【解析】由图可知,,解得.
6.选C.【解析】该几何体的直观图,如图所示
可知,是直角三角形,
∵,,,,不是直角三角形.
7.选A.【解析】∵图象经过点,
∴,解得,
由及函数在区间上是单调函数,可得,∴
8.选D.【解析】由题意知,,即,解得(舍),或.
9.选A.【解析】执行第一次运算时:
执行第二次运算时:
执行第三次运算时:
∴输出
10.选D.【解析】设抛物线的焦点为,准线为,分别过点作直线的
垂线,垂足分别为,由抛物线定义,得
.(是的中点)
11.选A.【解析】设中点分别为,
则
由外心的定义知,,因此,,
,∴…①
∵,∴
∴…③
把③代入①②得,解得.
12.选A.【解析】易知,为增函数,
∴若,则有,又,∴,即成立,
∴它的逆否命题:若,则成立;
在递增,在递减,
;
在递增,在递减,
,;
当时,方程有两解,不妨设;
方程也有两解,不妨设;
又当时,,∴,
这样当时,就有,或,故,C. D.不正确.
二、填空题 :共4小题,每小题5分,共20分.
13.填.【解析】此二项式的展开式的通项为,
令,,∴常数项为.
14.填.【解析】根据题意得,此双曲线的渐近线方程为,∴,∴.
15.填.【解析】 ∵是公差为的等差数列,∴,
∴,∴
∴数列的前9项和为.
16.填.【解析】如图,设的外接球的球心
为,∵在球面上,
∴球心在正方体上下底面中心连线上,点也在球上,∴
∵棱长为,∴,设,
则,在中,有…①,
在中,…②,将①代入②,得,
∵,∴,∴,于是.
三、解答题
17.(12分)
(Ⅰ)∵,∴,∴,故
由,得,∴,即; …6分
(Ⅱ)
由,知,故,∴
18.(12分)
如图,建立空间直角坐标系,设正方体的棱长为,
则有,
(Ⅰ),
设平面的法向量,
则,即,取,则,
设,则
∵平面,∴当且仅当,即时,∥平面
∴,,∴,
即是的中点时,∥平面; …6分
(Ⅱ),设平面的法向量
由,得,,取,则,
设二面角的平面角为,易知,
∴. …12分
19.(12分)
(Ⅰ)工资薪金所得的组区间的中点值依次为,取这些值的概率依次为,算得与其相对应的“全月应纳税所得额”依次为(元),按工资个税的计算公式(元),
(元),
(元),
(元),
(元);
∴该市居民每月在工资薪金个人所得税总收入为
(元); …6分
(Ⅱ)这5组居民月可支配额取的值分别是
(元);
(元);
(元);
(元);
(元);
∴的分布列为:
(元) …12分
20.(12分)
(Ⅰ)已知直线直线经过椭圆:的短轴端点 和右焦点,可得,∴
故椭圆的标准方程为; …5分
(Ⅱ)由椭圆的方程可得右焦点为,因为直线的斜率为,且直线经过右焦点,所以直线的方程为,
设,则点的坐标为
⑴当时,因为点在椭圆上,∴ …①
∴,依题意知
∴直线的斜率
则直线的方程为 …②
由①②得 …③
把直线的方程代入椭圆的方程得,
即…④
∵是方程④的两个实数解,∴,…⑤
∴…⑥
把⑤代入⑥得,…⑦
把⑤⑦代入③得,
即,令,解得
此时,直线过定点
⑵当时,点为椭圆的长轴端点,故点与点重合,此时直线即为 轴,而轴过点,则直线也过点
综上所述,直线直线过定点. …12分
21.(12分)
(Ⅰ)令
则,,
∵
当时,,∴…①
∴,∴函数为增函数,
∴,即…②
∴函数为增函数,
∴,即…③
∴函数为增函数,
∴,即当时,成立; …6分
(Ⅱ)⑴当时,∵
∴
∴函数为增函数,
当时,,当时,,
∴当时,函数的零点为,其零点个数为个
⑵当时,∵对,
∴函数为奇函数,且 …④
下面讨论函数在时的零点个数:
由(Ⅰ)知,当时,,令
∴
则,
当时,,∴,∴
∴函数为增函数
∴当时,;当时,
∴函数的减区间为,增区间为
∴当时,…⑤
即对时, …⑥
又由(Ⅰ)知,
当时,由③知,∴
故,当时,
由函数为增函数和⑥⑦及函数零点定理知,存在唯一实数
使得,又函数为奇函数
∴函数,有且仅有三个零点. …12分
22.(10分)
(Ⅰ)∵
又∵与切于点,是弦,∴
∴; …5分
(Ⅱ)∵,,∴∽
∴,∴ …①
而∽,∴ …②
由①②得
又∵,∴. …10分
23.(10分)
(Ⅰ)曲线的参数方程为,设,
则,即; …5分
(Ⅱ)设,
则. …10分
24.(10分)
(Ⅰ)设函数,则,画出其图象,可知,
要使不等式的解集不是空集,需且只需
∴的取值范围的集合; …5分
(Ⅱ)∵,∴
∵
∵,∴, ∴. …10分
以上各题的其他解法,限于篇幅从略,请相应评分.
数学学习 http://www.yggk.net/math/