黄冈市2013年5月高考理科数学冲刺试卷及其答案

学习频道    来源: 莲山课件      2024-07-20         

本站非官方网站,信息完全免费,仅供参考,不收取任何费用,请以官网公布为准!
阳光高考提供:黄冈市2013年5月高考理科数学冲刺试卷及其答案


(考试时间:1 2 0分钟试卷分数:1 5 0分)
注意事项
    1.答题前将密封线内的项目及座号填写清楚.
    2.请把第I卷中每小题你认为正确选项的代号填涂在答卷中选择题答案栏内.
第I卷
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知复数 (i为虚数单位),则 的虚部为
  A.-1     B.0     C.i    D.l
2.已知集合 ,则下列不正确的是 
 A.    B.     C.   D. 
3.若实数 .则函数 的图像的一条对称轴方程为 
 A.x=0 B.  C.  D. 
4.甲乙丙3位同学选修课程,从4门课程中选。甲选修2门,乙丙各选修3门,则不同的选修方案共有 
 A.36种     B.48种     C.96种     D.1 92种
5.已知不共线向量 则   
 A.  B.  C.  D. 
6.若 ,则 的大小关系
 A.  B. 
 C.  D. 
7.从一个正方体中截去部分几何体,得到的几何体三视图如下,则此几何体的体积是(    )
 A.64
 B.  
 C.  
D.  
8.执行如图所示的程序框图,若输出a= 341,判断框内应填写(    )
    A.k<4?     B.k<5?     
 C.k<6?     D.k<7?
9.若A为不等式组 所示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域面积为(    )
    A.2     B.1    
 C.       D. 
10.已知过抛物线y2 =2px(p>0)的焦点F的直线x-my+m=0与抛物线交于A,B两点,且△OAB(O为坐标原点)的面积为2 ,则m6+ m4的值为(    ) 
    A.1     B.  2     C.2     D.4
11.平行四边形ABCD中, • =0,沿BD折成直二面角A一BD-C,且4AB2 +2BD2 =1,则三棱锥A-BCD的外接球的表面积为(    )
   A.      B.         C.     D. 
12.已知R上的函数y=f(x),其周期为2,且x∈(-1,1]时f(x)=1+x2,函数g(x)= ,则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为(    )
   A.11     B.10     C.9     D.8
第Ⅱ卷
    本卷分为必做题和选做题两部分,13—21题为必做题,22、23、24为选考题。
二、填空题(本大题共4小题,每小题5分,共20分)
13. 的展开式中常数项的值是                (数字作答);
14.已知 的图像在点 处的切线斜率是              ;
15.△ABC中, ,则∠C最大值为_          ;
16.下列若干命题中,正确命题的序号是              。
    ①“a=3”是直线ax+2y+2a=0和直线3x+(a一l)y一a+7 =0平行的充分不必要条件;
    ②△ABC中,若acosA=bcos B,则该三角形形状为等腰三角形;
    ③两条异面直线在同一平面内的投影可能是两条互相垂直的直线;
    ④对于命题 使得 ,则 均有 .
三、解答题(本大题共6小题,共70分,解答应写出文字说明、或演算步骤)
17.(12分)已知等差数列 中,首项a1=1,公差d为整数,且满足 数列 满足 前 项和为 .
 (1)求数列 的通项公式an;
 (2)若S2为Sl, 的等比中项,求正整数m的值.
18.(12分)为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:
登记所需时间(分) 1 2 3 4 5
频率 0.1 0.4 0.3 0.1 0.1
   从第—个车主开始预约登记时计时(用频率估计概率),
 (l)估计第三个车主恰好等待4分钟开始登记的概率:
 (2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.
19.(12分)如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.
 (1)求证:AD⊥BC;
 (2)求二面角B—AC—D的余弦值.
20.(12分)若椭圆 的左、右焦点分别为F1,F2,椭圆的离心率为 :2.
 (1)过点C(-1,0)且以向量 为方向向量的直线 交椭圆于不同两点A、B,若 ,则当△OAB的面积最大时,求椭圆的方程。
 (2)设M,N为椭圆上的两个动点, ,过原点O作直线MN的垂线OD,垂足为D,求点D的轨迹方程.
21.(12分)已知函数f(x)=1n(2ax+1)+ -x2-2ax(a∈R).
 (1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
 (2)当a= 时,方程f(1-x)= 有实根,求实数b的最大值.,
 
【选考题】
    请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分,做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.
22.(10分)选修4-1:几何证明选讲
    如图,△ABC内接于⊙O,AB =AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.
 (1)求证:△ABE≌△ACD;
 (2)若AB =6,BC =4,求AE.
23.(10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,直线 的参数方程为 (t 为参数)。在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为 。
 (1)求圆C的直角坐标方程;
 (2)设圆C与直线 交于点A,B,若点P的坐标为(2, ),求|PA|+|PB|.
24.(10分)选修4-5,不等式选讲
    已知函数f(x)=|x+l|,g(x)=2|x|+a.
 (1)当a=0时,解不等式f(x)≥g(x);
 (2)若存在x∈R,使得f(x)≥g(x)成立,求实数a的取值范围. 
 
参考答案
一、选择题答案
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 B C B C A B C C D C A C
二、  13.   45                14.    -1       
15.                  16. (1)(3)(4) 
三、解答题 
17.解:
(1)由题意,得 解得 < d < .    
        又d∈Z,∴d = 2.∴an=1+(n-1) 2=2n-1.   4分   
(2)∵  ,
∴  . 10分
∵ , , ,S2为S1,Sm(m∈ )的等比中项,
∴ ,即 ,   解得m=12. 12分
18.解:设Y表示车主登记所需的时间,用频率估计概率,Y的分布如下:
Y 1 2 3 4 5
P 0.1 0.4 0.3 0.1 0.1
(1)A表示事件“第三个车主恰好等待4分钟开始登记”,则事件A对应三种情形:
(1)第一个车主登记所需时间为1分钟,且第二个车主登记所需的时间为3分钟;
(2)第一个车主登记所需的时间为3分钟,且第二个车主登记所需的时间为1分钟; 
(3)第一个和第二个车主登记所需的时间均为2分钟。
所以 
  6分
(2)X所有可能的取值为:0,1,2.X=0对应第一个车主登记所需的时间超过2分钟,所
以 ;X=1对应第一个车主登记所需的时间为1分钟且
第二个车主登记所需时间超过1分钟,或第一个车主登记所需的时间为2分钟,
所以  ;X=2对应两个
车主登记所需的时间均为1分钟,所以 ;
 10分
所以X的分布列为
X 0 1 2
P 0.5 0.49 0.01
 . 12分
19. 
(1)证明 作AH⊥平面BCD于H,连接BH、CH、DH,
易知四边形BHCD是正方形,且AH=1,以D为原
点,以DB所在直线为x轴,DC所在直线为y轴,
以垂直于DB, 的直线为z轴,建立空间直角坐
标系,如图所示,则B(2,0,0),C(0,2,0), A(2,2,1),   
所以BC→= , =  ,  4分
因此BC→•DA→= ,所以AD⊥BC.  6分 
(2)解:设平面ABC的法向量为n1=(x,y,z),则由n1⊥BC→知:n1•BC→= 
同理由n1⊥AC→知:n1•AC→= ,
可取n1= ,
同理,可求得平面ACD的一个法向量为  10分
∴cos〈n1,n2〉=n1•n2|n1||n2|= 
即二面角B—AC—D的余弦值为   12分
20.解:
(1) ,设椭圆的方程为 
依题意,直线 的方程为: 
由 
设 
 
                    …………………………4分
 
当且仅当 
此时  ……………………6分
(2)设点 的坐标为 .
当 时,由 知,直线 的斜率为 ,所以直线 的方程为 ,或 ,其中 , .
点 的坐标满足方程组 
得 ,整理得 ,
于是 , .
 
 .
由 知 . ,
 将 代入上式,整理得 .…10分
当 时,直线 的方程为 ,  的坐标满足方程组
 所以 , .
由 知 ,即 ,
解得 .        ………………11分
这时,点 的坐标仍满足 . 
综上,点 的轨迹方程为  ………………12分
21.解:
(1)因为函数 在 上为增函数,所以 
在 上恒成立。
①当 时, 在 上恒成立,所以 在 上为增
函数,故 符合题意。
②当 时,由函数 的定义域可知,必须有 在 上恒成立,
故只能 ,所以 在 上恒成立。 ..(4分)
令函数 ,其对称轴为 ,因为 ,
所以 ,要使 在 上恒成立,只要 即可,即 ,所以 ,因为 ,所以 
综上所述, 的取值范围为          (6分)
(2)当 ,方程 可化为 。问题转
化为 在 上有解,即求函数  的值域。令函数     (10分)
则 ,所以当 时, ,函数 在 上为增函数,当 时, ,函数 在 上为减函数,因此 。而 ,所以 ,因此当 时, 取到最大值 。
                                                          12分                                                                 
22.(本小题满分10分)选修4-1:几何证明选讲
解:(Ⅰ)在ΔABE和ΔACD中,
∵    ∠ABE=∠ACD………………2分 
又,∠BAE=∠EDC   ∵BD//MN    ∴∠EDC=∠DCN
∵直线是圆的切线,∴∠DCN=∠CAD  ∴∠BAE=∠CAD
∴Δ  Δ (角、边、角)                   5分 
(Ⅱ)∵∠EBC=∠BCM  ∠BCM=∠BDC
∴∠EBC=∠BDC=∠BAC  BC=CD=4
又   ∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB   
∴    BC=BE=4                                        8分 
设AE= ,易证  ΔABE∽ΔDEC
∴ 又   
∴                       10分
23.(Ⅰ)由 得                4分
(Ⅱ)将 的参数方程代入圆C的直角坐标方程,得 ,
即 由于 ,故可设 是上述方程的两实根,
所以 故由上式及t的几何意义得:
|PA|+|PB|= =  。                       10分
24.解: 
所以解集为                                5分
(1)即 ,使得 成立,令 ,则 
          , 
所以 。                                    10分
数学学习  http://www.yggk.net/math/
阳光考试网    考试资讯分享    m.yggk.net             [责任编辑:yggk]
阳光考试网手机版 |   学习频道 |   学习专栏 |   大学排行榜 |   高考查分系统 |   高考志愿填报 |   专题列表 |   教务管理系统 |   高考录取查询

  阳光文库   免费学习门户 备案号:闽ICP备11025842号-3 网站地图

本站所有资料完全免费,不收取任何费用,仅供学习和研究使用,版权和著作权归原作者所有

Copyright 2025 阳光学习网, All Rights Reserved.